Relation between Two Lines | Parallel, Perpendicular, Angle, Length of Perpendicular from a Point on a Line, Angular Bisector of Straight lines, Family of Lines

Relation between Two Lines

Let L1 and L2 be the two lines as

L1 : a1x + b1y + c1 = 0

L2  : a2x + b2y + c2 = 0

Two lines are said to be parallel if the below condition is satisfied,

\(\begin{array}{l}\frac{{{a}_{1}}}{{{a}_{2}}}=\frac{{{b}_{1}}}{{{b}_{2}}} \neq \frac{{{c}_{1}}}{{{c}_{2}}}\end{array} \)

Two lines intersect at a point if

\(\begin{array}{l}\frac{{{a}_{1}}}{{{a}_{2}}} \neq \frac{{{b}_{1}}}{{{b}_{2}}}\end{array} \)

Two lines coincide if

\(\begin{array}{l}\frac{{{a}_{1}}}{{{a}_{2}}}=\frac{{{b}_{1}}}{{{b}_{2}}}=\frac{{{c}_{1}}}{{{c}_{2}}}\end{array} \)

Angle between Straight Lines

\(\begin{array}{l}Let\,\,\,\,{{L}_{1}}\,\,\,\,\equiv \,\,\,y={{m}_{1}}x+{{c}_{1}}\end{array} \)

and

\(\begin{array}{l}{{L}_{2}}\,\,\,\equiv \,\,\,y={{m}_{2}}x+{{c}_{2}}\end{array} \)

Angle between Two Straight Lines

\(\begin{array}{l}\text{Angle} = \theta ={{\tan }^{-1}}\left| \left( \frac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right) \right|\end{array} \)

Special Cases:

\(\begin{array}{l}\Rightarrow {{m}_{2}}={{m}_{1}}\,\,\,\,\,\,\,\to \,\,\,\,\,lines\,are\,parallel\\\end{array} \)

\(\begin{array}{l}\Rightarrow \,\,{{m}_{1}}{{m}_{2}}=-1,\,\,\,\,\,\,\,\,\,\,lines\,L1\,\And L2\,are\,perpendicular\,to\,each\,other\end{array} \)

Length of Perpendicular from a Point on a Line

Length of Perpendicular from a Point on a Line

The length of the perpendicular from P(x1, y1) on ax + by + c = 0 is

\(\begin{array}{l}\ell =\left| \frac{a{{x}_{1}}+b{{y}_{1}}+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|\end{array} \)

B (x, y) is the foot of perpendicular is given by

\(\begin{array}{l}\frac{x-{{x}_{1}}}{a}=\frac{y-{{y}_{1}}}{b}=\frac{-(a{{x}_{1}}+b{{y}_{1}}+c)}{\left( {{a}^{2}}+{{b}^{2}} \right)}\end{array} \)

A’(h, k) is mirror image, given by

\(\begin{array}{l}\frac{h-{{x}_{1}}}{a}=\frac{k-{{y}_{1}}}{b}=\frac{-2(a{{x}_{1}}+b{{y}_{1}}+c)}{\left( {{a}^{2}}+{{b}^{2}} \right)}\end{array} \)

Angular Bisector of Straight lines

An angle bisector has an equal perpendicular distance from the two given lines.

Let L1 and L2 be the two lines as

The equation of line L can be given as

\(\begin{array}{l}\frac{{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}}=\pm \frac{{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}}{\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}}}\end{array} \)

Family of Lines:

The general equation of the family of lines through the point of intersection of two given lines, L1 & L2, is given by L1 +λ L2 = 0

Where λ is a parameter.

Concurrency of Three Lines

Let the lines be

\(\begin{array}{l}{{L}_{1}}\equiv {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\end{array} \)

\(\begin{array}{l}{{L}_{2}}\equiv {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\end{array} \)

and

\(\begin{array}{l}{{L}_{3}}\equiv {{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}=0\end{array} \)

So, the condition for the concurrency of lines is

\(\begin{array}{l}\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|=0\end{array} \)

Pair of Straight Lines

Pair of Straight Lines

Join equation of lines L1 & L2 represents P. S. L (a1x + b1y+c1) (a2x+b2y+c2) = 0

i.e. f(x,y) . g(x,y) = 0

Let’s defines a standard form of the equation:-

ax2 + by2 + 2hxy + 2gx + 2fy + c = 0 represent conics curve equation

Conics Curve Equations

Condition for curve of being P.O.S.L Δ = abc + 2fgh – af2 – bg2 – ch2 = 0

Solved Straight Line Problems

If Δ ≠ 0, (i) parabola h2 = ab

(ii) hyperbola h2 < ab

(iii) circle h2 = 0, a = b

(iv) ellipse h2 > ab

Now, let’s see how did we get Δ = 0

General equation ax2 + 2gx + 2hxy + by2 + 2fy + c = 0

ax2 + (2g+2hy)x + (by2 + 2fy + c) = 0

we can consider the above equation as a quadratic equation in x, keeping y constant.

\(\begin{array}{l}x=\frac{-(2g+2hy)\pm \sqrt{{{(2g+2hy)}^{2}}-4a(b{{y}^{2}}+2fy+c)}}{2a}\end{array} \)

, so

\(\begin{array}{l}x=\frac{-(2g+2hy)\pm \sqrt{Q(y)}}{2a}\end{array} \)

Now, Q(y) has to be a perfect square, and only then, we can get two different line equations Q(y) in the perfect square for that Δ value of Q(y) should be zero.

From there D = 0

abc + 2fgh – bg2 – af2 – ch2 = 0

Or

\(\begin{array}{l}\left| \begin{matrix} a & h & g \\ h & b & f \\ g & f & c \\ \end{matrix} \right|=0\end{array} \)

Note:
1. Point of intersection

To find point of intersection of two lines (P.O.S.L), solve the P.O.S.L, factorize it in (L1).(L2) = 0 or f(x, y) . g(u,y) = 0

2. Angle between the lines

\(\begin{array}{l}\tan \theta =\left( \left| \frac{2\sqrt{{{h}^{2}}-ab}}{a+b} \right| \right)\end{array} \)

Special cases:

h2 = ab → lines are either parallel or coincident

h2 < ab → imaginary line

h2 > ab → Two distinct lines

a + b = 0 ⇒ perpendicular line

3. P.O.S.L passing through the origin, then

⇒ (y – m1x) (y – m2x) = 0

y2 – m2yx – m1xy – m1m2x2 = 0

y2 – (m1 + m2) xy – m1m2x2 = 0

⇒ ax2 + 2hxy + by2 = 0

\(\begin{array}{l}\Rightarrow {{y}^{2}}+\frac{2h}{b}xy+\frac{ab}{b}{{x}^{2}}=0\end{array} \)

\(\begin{array}{l}\Rightarrow m1 + m2 = \frac{2h}{b}\end{array} \)

\(\begin{array}{l}m_1 m_2=\frac{a}{b}\end{array} \)

\(\begin{array}{l}\tan \theta =\left| \frac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|=\left| \frac{\sqrt{{{({{m}_{1}}+{{m}_{2}})}^{2}}4{{m}_{1}}{{m}_{2}}}}{1+{{m}_{1}}{{m}_{2}}} \right|=\left| \frac{2\sqrt{{{h}^{2}}-ab}}{a+b} \right|\end{array} \)

RELATED POST